19 research outputs found

    Parkinson's Disease in Central Asian and Transcaucasian Countries: A Review of Epidemiology, Genetics, Clinical Characteristics, and Access to Care

    Get PDF
    Our understanding of Parkinson’s disease (PD) has significantly accelerated over the last few years, but predominant advances have been made in developed, Western countries. Little is known about PD in the Central Asian (CA) and Transcaucasian (TC) countries. Here, we review the clinical characteristics, treatments used, epidemiology, and genetics of PD in CA and TC countries via a methodological search in MEDLINE, EMBASE, Scopus, Web of Science, and Google Scholar databases. For the acquisition of PD care-related data, the search was extended to the local web resources. Our findings showed that PD prevalence in the region is averaging 62 per 100,000 population. The mean age of onset is 56.4 ± 2.8 in females and 63.3 ± 3.5 in males. Large-scale national studies on PD prevalence from the region are currently lacking. A limited number of genetic studies with small cohorts and inconclusive results were identified. The G2019S LRRK2 mutation, the commonest mutation in PD worldwide, was found in 5.7% of patients with idiopathic PD and 17.6% of familial cases in 153 Uzbek patients. Our review highlighted systematic deficiencies in PD health care in the region including lacks of neurologists specializing in PD, delays in PD diagnosis, absence of specialized PD nurses and PD rehab services, limited access to PD medications and surgery, and the unavailability of PD infusion therapies. Overall, this article demonstrated the paucity of data on this common neurological disorder in CA and TC countries and identified a number of healthcare areas that require an urgent consideration. We conclude that well-designed large-scale epidemiological, genetic, and clinical studies are desperately needed in this region. Healthcare professionals, local and national institutions, and stakeholders must come together to address deficiencies in PD healthcare systems in CA and TC countries

    Biology of the medicinal plant Arum korolkowii Regel (Arum)

    Get PDF
    More than five thousand plant species thrive in various zones across Kazakhstan, representing a rich botanical diversity. Unfortunately, numerous plant species are becoming increasingly rare, and some are even threatened with extinction. The significance of utilizing medicinal plants has increased immeasurably in recent decades. The rational combination of medicinal plants holds the potential to expand therapeutic possibilities. However, the future use of medicinal plants may face significant limitations due to the overarching issue of diminishing biodiversity. While efforts to address biodiversity conservation predominantly focus on safeguarding species richness, the intraspecific variability of plants, crucial for population-level adaptation in transforming environments, remains inadequately explored. Particularly, the use of informative methods to study this variability has not received sufficient attention. Theoretical exploration of the population approach to conserving medicinal plant resources is lacking, exacerbated by a scarcity of experimental data in this domain, underscoring the relevance of this research. In light of the aforementioned challenges, it becomes evident that studying red-listed plants is pertinent not only in the context of Kazakhstan but also on a global scale. In this context, our research allowed investigate Arum Korolkov (Arum korolkowii Regel), a red-listed medicinal plant species found in the territories of Kazakhstan

    A glimpse of the genetics of young-onset Parkinson's disease in Central Asia

    Get PDF
    Background: Knowledge of the genetic background of many human diseases is currently lacking from genetically undiscovered regions, including Central Asia. Kazakhstan is the first Central Asian country where the genetic studies of Parkinson's disease (PD) have been emerging since it had become a member of the International Parkinson Disease Genomics Consortium. Here we report on the results of whole‐exome sequencing (WES) in 50 young‐onset PD (YOPD) cases from Kazakhstan. / Methodology: WES was performed on 50 unrelated individuals with YOPD from Kazakhstan. Exome data were screened for novel/ultra‐rare deleterious variants in known and candidate PD genes. Copy number variants and small indels were also called. / Results: Only three cases (6%) were found to be positive for known PD genes including two unrelated familial PD cases with LRRK2 p.(Arg1441Cys) and one case with a homozygous pathogenic PRKN p.(Arg84Trp) variant. Four cases had novel and ultra‐rare variants of uncertain significance in LRRK2, DNAJC13, and VPS35. Novel deleterious variants were found in candidate Mendelian PD genes including CSMD1, TNR, EIF4G1, and ATP13A3. Eight cases harbored the East Asian‐specific LRRK2 p.(Ala419Val) variant. Conclusions The low diagnostic yield in our study might imply that a significant proportion of YOPD cases in Central Asia remains unresolved. Therefore, a better understanding of the genetic architecture of PD among populations of Central Asian ancestry and the pathogenicity of numerous rare variants should be further investigated. WES is a valuable technique for large‐scale YOPD genetic studies in Central Asia

    High-Quality Graphene Using Boudouard Reaction

    Get PDF
    Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in general opens avenues for breakthrough graphene-catalyst composite production

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background: Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. / Methods: We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. / Findings: Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). / Interpretation: These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. / Funding: The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Identification of sixteen novel candidate genes for late onset Parkinson’s disease

    Get PDF
    Background Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. Methods The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). Results Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. Conclusions Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Enhanced Hall mobility in graphene-on-electronic-grade diamond

    Get PDF
    The outstanding electronic properties of graphene make this material a candidate for many applications, for instance, ultra-fast transistors. However, self-heating and especially the detrimental influence of available supporting substrates have impeded progress in this field. In this study, we fabricate graphene-diamond heterostructures by transferring graphene to an ultra-pure single-crystalline diamond substrate. Hall-effect measurements were conducted at 80 to 300 K on graphene Hall bars to investigate the charge transport properties in these devices. Enhanced hole mobility of 2750 cm2 V1 s1 could be observed at room-temperature when using diamond with reduced nitrogen (N <sup>0>/sup><sub>s</sub>) impurity concentration. In addition, by electrostatically varying the carrier concentration, an upper limit for mobility is determined in the devices. The results are promising for enabling carbon–carbon (C-C) devices for room-temperature applications
    corecore